Software engineer by trade,
AI enthusiast by obsession.
AI enthusiast by obsession.
CODE SAMPLES
Model Training
Python
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# The training loop
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(dtype=torch.long).to(device)
# Forward pass
outputs = model(words)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
API & Web Integration
Python
# Set up SOCKS proxy
quotaguard_url = os.getenv('QUOTAGUARDSTATIC_SOCKS_URL')
if quotaguard_url:
parsed = urlparse(quotaguard_url)
socks.set_default_proxy(
socks.PROXY_TYPE_SOCKS5,
parsed.hostname,
parsed.port,
parsed.username,
parsed.password
)
socket.socket = socks.socksocket
NLP & Preprocessing
Python
# Precompute intent embeddings
all_patterns = []
pattern_tags = []
# Load all patterns from intents file
for intent in intents['intents']:
tag = intent['tag']
for pattern in intent['patterns']:
cleaned_pattern = clean_sentence(pattern)
all_patterns.append(cleaned_pattern)
pattern_tags.append(tag)
pattern_embeddings = sentence_model.encode(all_patterns)
logger.debug(f"Loaded and pre-computed embeddings for {len(all_patterns)} patterns.")